
!

!

!
!

!

!

!
!
!
!
!
23 – 01 – 2014	

Université catholique de Louvain (kim.mens@uclouvain.be)	

Vrije Universiteit Brussel (ncardozo@vub.ac.be)

Nicolás Cardozo, Kim Mens, Sebastián González,
Pierre-Yves Orban, Wolfgang De Meuter2

2

1

1

2

1

Features on Demand

Nicolás Cardozo, Kim Mens, Sebastián González,
Pierre-Yves Orban, Wolfgang De Meuter2

2

1

1 1

2

1

8th International Workshop on Variability Modelling of Software-intensive Systems (VaMoS 2014)

mailto:kim.mens@uclouvain.be?subject=
mailto:ncardozo@vub.ac.be

Service
component

Service composition
���2

Service request

Process service component

response

Service
component

Service composition
���2

Service request

Process service component

response

Service
component

Feature clouds vision
���3

Service request

response

Process service component

Service
component

Feature clouds vision
���3

Service request

response

Process service component

Feature clouds vision
���3

Service request

response

Service
component

Process service component

Features on demand
���4

Requirements Feature Clouds ModelMotivating Example Conclusion

Motivating Example

���5

On-board car system
���6

Feature clouds model
���7

On-board car system
���8

On-board car system
���8

On-board car system
���8

Feature store
���9

Feature interaction
���10

Assistent driving service request

Statistics
SpeedGauge

EasySMS

RPMGauge

OBDSpeed

SMSSend

Feature interaction
���10

Assistent driving service request

no relation

Statistics
SpeedGauge

EasySMS

RPMGauge

OBDSpeed

SMSSend

Feature interaction
���10

Assistent driving service request

subsumption relation no relation

Statistics
SpeedGauge

EasySMS

RPMGauge

OBDSpeed

SMSSend

���11

Requirements

Feature clouds requirements
���12

Service
component

Service request

response

Service
component

Process service component

Feature clouds requirements
���12

Service
component

Service request

response

Service
component

Process service component

Dynamic behavior composition

Feature clouds requirements
���12

Fine-grained features

Service
component

Service request

response

Service
component

Process service component

Dynamic behavior composition

Feature clouds requirements
���12

Fine-grained features

Service
component

Service request

response

Service
component

Process service component

Manage feature interaction

Dynamic behavior composition

Feature clouds requirements
���12

Fine-grained features

Service
component

Service request

response

Service
component

Process service component

Manage feature interaction

Appropriate infrastructure

Dynamic behavior composition

���13

Feature Clouds Model

Feature clouds model
���14

Feature-oriented programming

Context-oriented programming
+

Feature clouds model
���15

Feature-oriented programming

Context-oriented programming
+

Feature clouds model
���15

Feature-oriented programming

Context-oriented programming
+

Display speed reading
using the imperial system
unitslocation = UK

Feature clouds model
���15

Feature-oriented programming

Context-oriented programming
+

Display speed reading
using the imperial system
units

Display speed reading
using the metric system
units

location = UK

location = EC

Feature clouds model
���15

Feature-oriented programming

Context-oriented programming
+

Display speed reading
using the imperial system
units

Display speed reading
using the metric system
units

location = UK

location = EC

Feature clouds model
���15

Feature-oriented programming

Context-oriented programming
+

Display speed reading
using the imperial system
units

Display speed reading
using the metric system
units

location = UK

location = EC

UKSpeedGauge = new ({
 name: ‘uk_speed_gauge’ });

Feature clouds model
���16

contexts

[Context Traits: Dynamic Behaviour Adaptation Through Run-Time Trait Recomposition. Modularity’13]

ImperialSystem = Trait({
 var CONV_RATIO = 0.621371192;
 getSpeed: function(msg) {
 _val = this.proceed();
 Math.round _val * CONV_RATIO; }

 getHtml: function() {
 display.setGaugeDisplay(this.proceed().replace("km/h", "mph")); }
 });

 UKSpeedGauge.adapt(SpeedGauge, ImperialSystem);

cop.Context

gps.EventListener('gps_reading',
 function(location) {
 if(location is ‘UK’)
 UKSpeedGauge.activate();
 else UKSpeedGauge.deactivate(); })

UKSpeedGauge = new ({
 name: ‘uk_speed_gauge’ });

Feature clouds model
���16

featurescontexts

[Context Traits: Dynamic Behaviour Adaptation Through Run-Time Trait Recomposition. Modularity’13]

ImperialSystem = Trait({
 var CONV_RATIO = 0.621371192;
 getSpeed: function(msg) {
 _val = this.proceed();
 Math.round _val * CONV_RATIO; }

 getHtml: function() {
 display.setGaugeDisplay(this.proceed().replace("km/h", "mph")); }
 });

 UKSpeedGauge.adapt(SpeedGauge, ImperialSystem);

Feature

gps.EventListener('gps_reading',
 function(location) {
 if(location is ‘UK’)
 UKSpeedGauge.activate();
 else UKSpeedGauge.deactivate(); })

UKSpeedGauge = new ({
 name: ‘uk_speed_gauge’ });

Feature clouds model
���16

featurescontexts

[Context Traits: Dynamic Behaviour Adaptation Through Run-Time Trait Recomposition. Modularity’13]

ImperialSystem = Trait({
 var CONV_RATIO = 0.621371192;
 getSpeed: function(msg) {
 _val = this.proceed();
 Math.round _val * CONV_RATIO; }

 getHtml: function() {
 display.setGaugeDisplay(this.proceed().replace("km/h", "mph")); }
 });

 UKSpeedGauge.adapt(SpeedGauge, ImperialSystem);

Feature Feature definition

gps.EventListener('gps_reading',
 function(location) {
 if(location is ‘UK’)
 UKSpeedGauge.activate();
 else UKSpeedGauge.deactivate(); })

UKSpeedGauge = new ({
 name: ‘uk_speed_gauge’ });

Feature clouds model
���16

featurescontexts

[Context Traits: Dynamic Behaviour Adaptation Through Run-Time Trait Recomposition. Modularity’13]

ImperialSystem = Trait({
 var CONV_RATIO = 0.621371192;
 getSpeed: function(msg) {
 _val = this.proceed();
 Math.round _val * CONV_RATIO; }

 getHtml: function() {
 display.setGaugeDisplay(this.proceed().replace("km/h", "mph")); }
 });

 UKSpeedGauge.adapt(SpeedGauge, ImperialSystem);

Feature Feature definition

gps.EventListener('gps_reading',
 function(location) {
 if(location is ‘UK’)
 UKSpeedGauge.activate();
 else UKSpeedGauge.deactivate(); })

Feature selection

UKSpeedGauge = new ({
 name: ‘uk_speed_gauge’ });

Feature clouds model
���16

featurescontexts

[Context Traits: Dynamic Behaviour Adaptation Through Run-Time Trait Recomposition. Modularity’13]

ImperialSystem = Trait({
 var CONV_RATIO = 0.621371192;
 getSpeed: function(msg) {
 _val = this.proceed();
 Math.round _val * CONV_RATIO; }

 getHtml: function() {
 display.setGaugeDisplay(this.proceed().replace("km/h", "mph")); }
 });

 UKSpeedGauge.adapt(SpeedGauge, ImperialSystem);

Feature Feature definition

Behavior definition

gps.EventListener('gps_reading',
 function(location) {
 if(location is ‘UK’)
 UKSpeedGauge.activate();
 else UKSpeedGauge.deactivate(); })

Feature selection

UKSpeedGauge = new ({
 name: ‘uk_speed_gauge’ });

Feature clouds model
���16

featurescontexts

[Context Traits: Dynamic Behaviour Adaptation Through Run-Time Trait Recomposition. Modularity’13]

ImperialSystem = Trait({
 var CONV_RATIO = 0.621371192;
 getSpeed: function(msg) {
 _val = this.proceed();
 Math.round _val * CONV_RATIO; }

 getHtml: function() {
 display.setGaugeDisplay(this.proceed().replace("km/h", "mph")); }
 });

 UKSpeedGauge.adapt(SpeedGauge, ImperialSystem);

Feature Feature definition

Behavior definition

Feature-behavior	

association

gps.EventListener('gps_reading',
 function(location) {
 if(location is ‘UK’)
 UKSpeedGauge.activate();
 else UKSpeedGauge.deactivate(); })

Feature selection

Dependency relations
���17

[Modeling and Analyzing Self-Adaptive Systems with Context Petri Nets. TASE’13]

[Subjective-C: Bringing Context to Mobile Platform Programming. SLE’10]

EasyAnswer EasyContacts
Exclusion

OnBoardTV RemoteController
Inclusion

UKSpeedGauge

UKDriving

Combination
SpeedGauge

Alternative

Specialize

Subsume

Combine

1-1

1-1

1-*

*-1

SpeedRPMGauge

SpeedGauge

Subsumption RPMGauge

Feature clouds infrastructure
���18

Brake assistance

Automatic headlight

Phone
Navigation system

TV on board

Brake assistance

Automatic headlight

Phone
Navigation system

Autom
atic sunroof

Heated seats

Demand

Dro
p

Features on Demand

Feature clouds infrastructure
���18

Brake assistance

Automatic headlight

Phone
Navigation system

TV on board

Brake assistance

Automatic headlight

Phone
Navigation system

Autom
atic sunroof

Heated seats

Demand

Dro
p

Feature Store

Features on Demand

Feature clouds infrastructure
���18

Brake assistance

Automatic headlight

Phone
Navigation system

TV on board

Brake assistance

Automatic headlight

Phone
Navigation system

Autom
atic sunroof

Heated seats

Demand

Dro
p

Active features

Inactive features

Feature Store

Feature Manager

Features on Demand

���19

Conclusion

Summary
���20

Feature Clouds

✓ Infrastructure for automated service composition	

Feature Store

✓ Fine-grained feature definition	

Feature Manager

✓Dynamic selection and composition	

✓ Feature interaction

Open Questions
���21

Granularity of features	

does the approach remain manageable for a user or
developer at this fine level of granularity?	

Third party features	

Run-time composition and verification	

Feature clouds infrastructure	

need for a more holistic approach: in addition to
behavioural aspect, also need to consider the data and
UI aspects

Open Questions
���21

Granularity of features	

does the approach remain manageable for a user or
developer at this fine level of granularity?	

Third party features	

Run-time composition and verification	

Feature clouds infrastructure	

need for a more holistic approach: in addition to
behavioural aspect, also need to consider the data and
UI aspects

Questions?

