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UKSpeedGauge = new             ({ 
 name: ‘uk_speed_gauge’ });
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contexts

[Context Traits: Dynamic Behaviour Adaptation Through Run-Time Trait Recomposition. Modularity’13]

ImperialSystem = Trait({ 
   var CONV_RATIO = 0.621371192; 
   getSpeed: function(msg) {  
     _val = this.proceed(); 
     Math.round _val * CONV_RATIO; } 
     
   getHtml: function() { 
     display.setGaugeDisplay(this.proceed().replace("km/h", "mph")); } 
   }); 
     
 UKSpeedGauge.adapt(SpeedGauge, ImperialSystem);   

cop.Context

gps.EventListener('gps_reading',  
  function(location) { 
      if(location is ‘UK’)  
          UKSpeedGauge.activate(); 
      else UKSpeedGauge.deactivate(); })
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featurescontexts

[Context Traits: Dynamic Behaviour Adaptation Through Run-Time Trait Recomposition. Modularity’13]

ImperialSystem = Trait({ 
   var CONV_RATIO = 0.621371192; 
   getSpeed: function(msg) {  
     _val = this.proceed(); 
     Math.round _val * CONV_RATIO; } 
     
   getHtml: function() { 
     display.setGaugeDisplay(this.proceed().replace("km/h", "mph")); } 
   }); 
     
 UKSpeedGauge.adapt(SpeedGauge, ImperialSystem);   
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Behavior definition

Feature-behavior	


association

gps.EventListener('gps_reading',  
  function(location) { 
      if(location is ‘UK’)  
          UKSpeedGauge.activate(); 
      else UKSpeedGauge.deactivate(); })

Feature selection
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[Modeling and Analyzing Self-Adaptive Systems with Context Petri Nets.  TASE’13]

[Subjective-C: Bringing Context to Mobile Platform Programming.  SLE’10]

EasyAnswer EasyContacts
Exclusion

OnBoardTV RemoteController
Inclusion

UKSpeedGauge

UKDriving

Combination
SpeedGauge

Alternative

Specialize

Subsume

Combine

1-1

1-1

1-*

*-1

SpeedRPMGauge

SpeedGauge

Subsumption RPMGauge
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Conclusion



Summary
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Feature Clouds 

✓ Infrastructure for automated service composition	



Feature Store 

✓ Fine-grained feature definition	



Feature Manager 

✓Dynamic selection and composition	



✓ Feature interaction



Open Questions
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Granularity of features	



does the approach remain manageable for a user or 
developer at this fine level of granularity?	



Third party features	



Run-time composition and verification	



Feature clouds infrastructure	



need for a more holistic approach: in addition to 
behavioural aspect, also need to consider the data and 
UI aspects
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