The Feature Pack Approach

Systematically Managing Implementations in Software Ecosystems

Markus Keunecke
keunecke@sse.uni-hildesheim.de
University Hildesheim

Hendrik Brummermann
brummermann@sse.uni-hildesheim.de
HIS GmbH

Klaus Schmid
schmid@sse.uni-hildesheim.de
University Hildesheim
Agenda

- Context
- Problem
- Approach
- Conclusion
Context - HIS

- HIS is a non-profit company
- Jointly owned by the Federal States of Germany
- Founded 45 years ago
- Currently about 200 employees / 30 core developers
- Most German universities use HIS software
Context - HISinOne

- University Management System called “HISinOne”
- Development started 2007
- 9 major releases up to now
- Large system
 - > 5 Mio LoC
 - > 800 database tables
 - > 6000 columns
- is an ecosystem
The Feature Pack Approach

Context - Ecosystem

- Publication Management
- Quality Assessment
- Project Management
- Output Measurement

Customer 1
- core

Customer 2
- core
The Feature Pack Approach

<table>
<thead>
<tr>
<th>Context</th>
<th>Problem</th>
<th>Approach</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Problem

- Heterogeneous implementation elements (e.g., UI, business logic, database elements, webservice definitions)
- Distributed implementation of features (e.g., feature developed by customers)
- No knowledge of complete variability model
- Composition of features from different sources by customers
- Detection of inconsistencies arising from combinations
Approach - Feature Pack Definition

<table>
<thead>
<tr>
<th>Context</th>
<th>Problem</th>
<th>Approach</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Variability Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Realization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< <> < > < ></td>
<td></td>
</tr>
</tbody>
</table>
The Feature Pack Approach

<table>
<thead>
<tr>
<th>Context</th>
<th>Problem</th>
<th>Approach</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Approach - Installation Definition

Variability Model

Realization
Approach – Quality Criteria

- Variability-model vs. asset consistency
- Referential consistency
 - Type consistency
 - Behaviour consistency
 - Configuration completeness
 - Reference data completeness
Approach – Variability-Model Asset-Consistency

<table>
<thead>
<tr>
<th>Context</th>
<th>Problem</th>
<th>Approach</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

A

Variability Model

Realization

<<>

B

Variability Model

Realization

<<>
The Feature Pack Approach

Approach – Referential Consistency

- All Feature Packs Variability-Model Asset-Consistent ✓
- All dependencies resolved ✓
 → Installation is referential consistent ✓
<table>
<thead>
<tr>
<th>Context</th>
<th>Problem</th>
<th>Approach</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Approach – Implementation for Referential Consistency

- Open Source Project plugfy
- Checks Java Byte Code, Spring Configuration
- Prototype
- In production use at HIS
Conclusion - Results

• Presented approach for systematic management of implementations:
 • Feature Packs bundle variability model and realization
 • Heterogeneous implementation assets
 • Formalized two quality criteria (in our paper)
 • Instantiated approach for a specific system
 • Implemented a tool for verification of referential consistency for specific technology
Conclusion - Further Work

- Extend approach to evolution
- Formalize remaining quality criteria
- Describe “instantiation” of feature packs for systems
Questions?