research-in-progress report

towards system analysis with variability model metrics thorsten berger, jianmei guo

how big is my system?

thorsten berger, jianmei guo

simple systems

simple model / simple feature modeling language

model adapted from keynote of J. Savolainen

systems software

a systems software model

cdl component POSIX SIGNALS { display "POSIX signals configuration" flavor bool default value 1 requires KERNEL EXCEPTIONS requires POSIX PTHREAD requires POSIX TIMERS implements POSIX_REALTIME_SIGNALS implements ISO SIGSETJMP cdl op requires { ISO_SIGSETJMP_HEADER == "<cyg/posix/sigsetjmp.h>" } displa implements ISO SIGNAL NUMBERS flavor implements ISO SIGNAL IMPL legal requires { ISO SIGNAL NUMBERS HEADER == "<cyg/posix/signal.h>" } calcul requires { CYGBLD ISO SIGNAL IMPL HEADER == "<cyg/posix/signal.h>" } description "This component provides configuration controls for the POSIX signals." compile signal.cxx except.cxx descri }

descriptor space is saved, as well as no longer requiring POSIX realtime signal support."

feature modeling concepts

hierarchy

Boolean, integer, string features

}

feature groups

cross-tree constraints

scalability concepts

derived features ranges expressive constraint languages visibility conditions defaults (als computed) capabilities binding modes hierarchy manipulation

Berger, She, Lotufo, Czarnecki, Wasowski: A Study of Variability Models and Languages in the Systems Software Domain. IEEE Transactions on Software Engineering, 2013

more systems software models

129 models 108 – 8355 features languages: CDL and Kconfig system: 26K – 10.2M LOC

models (ordered by size)

analysis tools CDLTools LVAT (credits: S. She)

abstractions

configuration space in propositional logic (DIMACS) hierarchy plots

WHY TO MEASURE?

quantifying model properties

assure quality attributes

HOW TO MEASURE?

measurement using metrics

understanding of low-level attributes of variability models is low!

metrics definition

goal: define metrics for low-level characteristics

9 structural metrics

reflect size, shape, hierarchy, grouping

7 feature representation metrics

reflect data types (switch, none, number, string), value domain restrictions (e.g., ratio of open value domain features), capabilities

10 feature constraint metrics

constrained features, ratio of constraint types (e.g., derived, visibility, default)

3 dependency metrics

CTCR, density, connectivity

prospective metrics

hierarchy specifics, feature descriptions, feature-to-code mapping

ANALYSES USING METRICS

preliminary experiment

possible analysis techniques

interest in co-variance: association (correlation) analysis

interest in prediction: classification and regression

interest in outliers: clustering and anomaly detection

CORRELATION ANALYSIS

preliminary experiment

methodology

eight real-world systems with models and proper (C-based) codebases

model	version	features	LOC
ToyBox	0.1.0	191	26K
axTLS	1.4.9	114	21.4K
Fiasco	2013091917	213	140K
$\operatorname{BusyBox}$	1.21.0	921	$195 \mathrm{K}$
eCos~i386PC	3.0	1256	$301 \mathrm{K}$
uClibc	0.9.31	367	320K
$\operatorname{CoreBoot}$	4.0-nov $2013.git$	4118	1.5M
Linux x86	3.4	8355	10.2M

correlation test criteria (limitations)

model metrics have no normal distribution

low sample size compared to the number of variables (34 model metrics, 23 code metrics)

Spearman correlation test

significant level: p-value < 0.05

Spearman is non-parametric and can detect non-linear relationships, to account for limitations of our dataset

qualitative inspection of correlations

selection of preliminary

model metric correlation test

goal: identify inherent model characteristics

	NF	NGF	qoTN	LD_median	NLeaf	LD_mean	BF_mean	BF_max	LD_max	BF_median	RSwitch	RData	RDatanum	R.None	RData_strin	RCap	RDataOpen	RDerived	RDataRes	RConstr	RDefault	R.Derived lit	RVisibility	RDefault_lit	NOr	RConfVis	NXor	NMutex	RQr	RMutex	RXor	CTCR	RDen	RCon
NF	+++++	0.731	0.952		1	_		_		_	_			_	_		_			_				_		_	0.762						_	
NGF	0.04	+++++	0.755		0.731	0.731		_		_	_			_			_			_								_				_		_
NTop	0.001	0.031	+++++		0.952	_		_		_	_			—			_			_				_		_	0.762					_	_	
LD_median				+++++		0.913																												
NLeaf	<0.001	0.04	0.001		+++++					—	_			_			_			_							0.762	_						_
LD_mean	_	0.04	—	0.002		+++++	-0.762							—																				
BF_mean	_	_	—			0.037	+++++		-0.724		_			—			_			_														—
BF_max								+++++						-0.786																				
LD_max		_				_	0.042	_	*****	-0.745										_											-0.737	-0.786	-0.835	
BF_median			—						0.034	+++++	-0.771	0.771		—			0.771														0.843	0.783	0.771	
RSwitch										0.025	+++++	-1	-0.833	_	-0.929		-1			_														
RData										0.025	<0.001	+++++	0.833		0.929		1																	
RData_num		_						_			0.015	0.015	*****	_	0.762		0.833						0.762									_		
RNone								0.028						+++++				-0.833			0.762	-0.833		0.762			-0.857							
RData_string											0.002	0.002	0.037	_	+++++		0.929																	
RCap																+++++												1		1				
RDataOpen		_	_			_		_		0.025	<0.001	< 0.001	0.015	_	0.002		++++			_				_		_						_		
RDerived														0.015				+++++			-0.81	1		-0.81		0.857	0.833							
RDataRes		_	—											—					+++++													_		_
RConstr		_	_											_			_			+++++														_
RDefault		_	_					_		_	_			0.037			_	0.022		_	+++++	-0.81		1			-0.857	_				_	-0.738	_
RDerived_lit														0.015				< 0.001			0.022	+++++		-0.81		0.857	0.833							
RVisibility		_											0.037							_			++++									_		_
RDefault_lit		_												0.037				0.022		_	< 0.001	0.022		+++++			-0.857						-0.738	
NOr	_		_							_							_				·				+++++			_	1			_		
RConfVis		_	_											_				0.011		_		0.011				+++++	0.81							
NXor	0.037		0.037		0.037									0.011				0.015			0.011	0.015		0.011		0.022	+++++	_						
NMutex		_						_								< 0.001												+++++		1		_		
ROr																									< 0.001				++++					
RMutex		_						_			_			_		< 0.001				_								< 0.001		+++++		_		
RXor									0.037	0.009																					+++++		0.786	
CTCR						_			0.021	0.022					_																	+++++	0.929	0.929
RDen		_	_						0.01	0.025											0.046			0.046							0.028	0.002	+++++	0.929
RCon																																0.002	0.002	+++++

correlations and insights

model size and shape

number features, number top-level features and leaf features

-> equal growth at both levels; with other findings: shapes remain when models grow

ratio of abstract features strongly negatively correlated with branching, but strongly correlated with defaults

-> domain modeling does not produce wide trees, and the more manual effort goes into domain modeling, the more defaults are modeled

mean and median branching not correlated

-> many outliers (we knew before), median is the better measure

correlations and insights

feature constraints

CTCR correlated strongly with branching and strongly negatively with maximum depth

-> wider and less-deep trees have less opportunities to encode constraints in hierarchy

CTCR, connectivity and density of dependency graph highly correlate

-> more investigation required, but early indicator of regular, non-skewed structures

model and code relationship

code metrics from [Liebig et al. 2010]

adapted the cppstats tool, and ran it on our codebases

metric	description
LOC	lines of code number of feature constants (features referenced in
	source code)
LOFC	lines of feature code
ND	average (AND) and maximal (NDMAX) nesting
~ ~	of conditional compilation directives $(\#IF^*)$
SD	scattering degree: average and standard deviation
	of the number of occurrences of features in different
Ш	expressions of conditional compliation directives
ID	the number of features in expressions of conditional
	compilation directives
GRAN	number of #IFDEFS occurring at a certain kind
	of language granularity: global level (GRANGL),
	function or type level (GRANFL), block level
	(GRANBL), statement level (GRANSL), expres-
	sion level (GRANEL), method signature level
	(GRANML)
TYPE	number of extensions under equivalent $\#IF^*$ expres-
	sions: homogeneous extensions with duplicated code
	(HOM), heterogeneous extensions with varying code
	(\mathbf{HET}) , and mixed (\mathbf{HOHE}) .

Liebig, Apel, Lengauer, Kästner, Schulze: An analysis of the variability in forty preprocessor-based software product lines. In International Conference on Software Engineering, 2010

model and code relationship

goal: explore potential of predicting system characteristics

	NF	NGF	NT₀p	LD_median	NLeaf	LD_mean	BF_mean	BF_max	LD_max	BF_median	RSwitch	RData	RData_num	RNone	RData_string	RCap	RDataOpen	RDerived	RDataRes	RConstr	RDefault	RDerivedlit	RVisibility	RDefault_lit	NOr	RConfVis	NXor	NMutex	ROr	RMutex	RXor	CTCR	RDen	RCon
LOC	1	0.731	0.952		1	_			_			_	_	_				_					_			_	0.762			_				
NOFC	0.905		0.857		0.905																						0.905							
LOF	0.905	0.778	0.881		0.905																						0.786							
ANDAVG									_		-0.857	0.857	_		0.833		0.857										_							
ANDSTDEV															0.81																			
SDEGMEAN									_		-0.738	0.738	0.738				0.738									0.786	0.738							
SDEGSTD													_							-0.786			_			0.762	0.857							
TDEGMEAN									-0.773	0.843																0.833					0.762	0.762	0.762	
TDEGSTD										0.723																0.857								
HOM	0.952	0.755	1		0.952				_																		0.762							
HET									_																									
HOHE	0.976	0.79	0.976		0.976																						0.786							
GRANGL	0.905		0.857		0.905				_				_														0.905							
GRANFL	0.929	0.85	0.929		0.929				_				_	_				_					_									_		
GRANBL	0.905	0.922	0.905		0.905																													
GRANSL	0.738				0.738								_										_											
GRANEL	0.805	0.785			0.805																													
GRANML	0.85		0.802		0.85																													
GRANERR	0.755				0.755				_					-0.79													0.85							
NDMAX									_	0.758	-0.731	0.731					0.731	0.778				0.778				0.934	0.778							
RDerived_expr	0.764	0.741	0.764		0.764								0.764	_																				
RDefault_expr		0.768				0.733										0.756												0.756		0.756				
RPurelyBoolConstr	-0.723			—	-0.723	_		—		—								_					—	—			_						—	

correlations and insights

sizes

model size metrics and code size metrics (LOC, NOFC, LOFC) very strongly correlated

size metrics very strongly correlated with code extension metrics HOM, HOHE, but not with HET

granularity

sizes strongly correlated with extension granularities (GRANGL, GRANFL, GRANBL, GRANSL, GRANEL, GRANML, and GRANERR)

 -> identification of significant system characteristics
 -> indications of system characteristics show that forward and reverse inference of model and code characteristics is possible

CONCLUSION

summary and conclusions

contributions: defined and implemented metrics on rich languages, a tool, quantitative datasets, qualitatively inspected correlations

model metrics provide insights

analysis both confirms earlier findings and provides a complementary picture

model and code metric analysis can potentially provide insights
for instance, for reverse-engineering techniques
-> further analysis required, but needs better focus

outlook

evaluation of applicability of metrics to further languages and further real models

investigate prospective model metrics and feature metrics

connect to findings about computational and cognitive complexity

theoretical evaluation of the metrics regarding accepted properties (e.g., additivity, triangle inequality), for instance, using the DISTANCE framework

look at evolution?

and so?

models

https://bitbucket.org/tberger/variability-models https://code.google.com/p/linux-variability-analysistools/source/browse/?repo=extracts

metrics and analysis tools

VMM https://bitbucket.org/tberger/vmm

LVAT (S. She) https://code.google.com/p/linux-variability-analysis-tools/

CDLTools https://bitbucket.org/tberger/cdltools

read on...

Berger, She, Lotufo, Czarnecki, Wasowski: A Study of Variability Models and Languages in the Systems Software Domain. IEEE Transactions on Software Engineering, 2013 She, Berger: Formal Semantics of the Kconfig Language. Technical Note, 2010 Berger, She: Formal Semantics of the CDL Language. Technical Note, 2010

thanks for listening!

towards system analysis with variability model metrics thorsten berger, jianmei guo